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Abstract 
 
Usually color coordinates of a colorimetric controlled process are located in an ellipsoid in the color 
space. These ellipsoids are usually not aligned to the coordinate axes. Their shape and orientation 
depend on the variances and covariances of the data. In such cases multivariate statistics has to be 
applied to describe the scattering around the mean color. Instead of ∆E the Mahalanobis distance is a 
superior measure for the statistical distance in color space. On this basis the errors in a measuring 
process have been estimated. The examples presented include the detection of outliers, the precision 
and time stability of the spectrophotometer, with the use of electronic references.  
 
 
Scattering of color coordinates 
 

 
   
Fig. 1: Typical scattering of color coordinates around an average color in different processes (from left 
to right): scattering of color coordinates on a wood surface [1], 4 color standard cards RAL1021 rape 
yellow [2], industrial coatings of RAL-colors [3]. 
 
Usually scattering of data is expected in any measuring or controlling process (Fig. 1). Color meas-
urement or a process monitored by color measurement results in a cloud of data with a certain shape 
in the color space. Only in case of equally scaled, equally weighted, and independent coordinate axes 
isotropic scattering results in a spherical data cloud (Fig. 2). Color coordinates, e.g. CIELAB-
coordinates, are scaled to the visual sensation of the human eye and are a priori not independent. 
These are the reasons that even a stochastic scattering of process data results in an anisotropic cloud 
of data that is rotated against coordinate axes. In other words, color measurement data randomly dis-
persed around an average color result in an ellipsoidally shaped cloud rotated against the L*,a*,b*-axes 
rather than in a spherical one (Fig. 2, bottom). 
 
Two color measurements that occur with the same probability in a process generally result in two color 
loci with different Euclidian distances ∆E*

ab from the average color of the process (Fig. 3). As a conse-
quence ∆E*

ab is not an adequate measure to describe a color measurement process.  
 
Therefore control of color specification has to be discerned from process control. ∆E*

ab is a parameter 
for the description of visual perception of color differences. It is not sufficient to monitor the production 
or a measuring process. In the following, the Mahalanobis distance [4, 5] is used to describe the 
weighted statistical distance of a measurement relative to the process average. 
 



 
  
Fig. 2: Geometry of scattering of 3-dimensional data. 
 

 
  
Fig. 3: The data dispersion is described by an ellipsoid. Data points located on the surface of the same 
ellipsoid have the same Mahalanobis distance from the average (left). As the ellipsoid radius is propor-
tional to the probability, all points on the same ellipsoid occur with the same statistical probability 
(right). 
 
 
Multivariate statistical methods for the descriptio n of scattering of color coordinates 
 
CIELAB color coordinates are calculated from the tristimulus values X,Y,Z. Tristimulus values are de-
rived from overlapping regions in the reflection spectrum and are not independent. Therefore covari-
ances are different from zero. As previously mentioned, color spaces are designed on the basis of 
visual sensation aiming on uniformity in color differences, and a spherical dispersion is not expected. 
For this reason multivariate statistics have to be applied.  
 
The best fitted method to describe the scattering of color loci is to use an ellipsoid that encloses a 
defined amount of measured color coordinates, e.g. 95% or 99%. In multivariate statistics an ellipsoid 
that encloses a certain number of data of the population is called a prognosis ellipsoid. To calculate 
the prognosis ellipsoid the average color coordinates, variances vik (with i=k, Eq. 1) and covariances 
vik (with i≠k, Eq. 2) of all coordinates are calculated and listed in the covariance matrix V (Eq. 3). The 
coefficients gik of the equation of the prognosis ellipsoid (Eq. 5) are the elements of the inverted covar-
iance matrix G (Eq. 4). The size of the prognosis ellipsoid for a certain confidence level (1-α) is esti-
mated by either the quantile of the Fisher- or the Beta-distribution (Eq. 6) with n is the number of 
measurements, 3 as number of dimensions (coordinate axes), and (1-α) as confidence level. In our 
investigation we used the F-distribution (Eq. 6). 
 



 
 
Mahalanobis distance as statistical distance for th e process control – T²-Chart 
 
T² is the square Mahalanobis distance and a synonym for Hoteling’s T² [4]. In Eq. 5 T² is used as a 
square ellipsoid radius. An ellipsoid radius is not an Euclidian distance. It represents the extension of 
the ellipsoid dependent on the direction (Fig. 3). In case of s Hotelling’s T²-statistics it is used as a 
weighted statistical distance from the center point (average). The weighting factors are the coefficients 
gik of the ellipsoid equation (Eq. 5) that are deduced from the process scattering. 
 
The population is estimated by the prognosis ellipsoid with the confidence level e.g. (1-α)=0.99. In this 
case a data point outside of the prognosis ellipsoid is an outlier with an error probability of α=0.01. 
Consequently the corresponding T²-value might be used as an upper control limit (UCL) for the pro-
cess and for the detection of outliers. 
 

  
 
Fig. 4: Scattering of data with prognosis ellipsoid of a stable production in the difference coordinate 
system of the DIN99 color space with the average color as center point. Each data point is a mean 
value of 20 measurements at different locations of the sample. The prognosis ellipsoid has a confi-
dence level of (1-α)=0.99 revealing five outliers.  
 
 
Detection of outliers 
 
Usually only a sample containing n color measurements from the basic population is available. Assum-
ing a steady state process a sample taken to derive the UCL is called historical data set (HDS).  



The parameters of the population have to be estimated from this sample. This sample may contain 
outliers which are not elements of the population which obeys a certain statistical distribution. For the 
detection of outliers one calculates the sample mean, the covariance matrix and the UCL (according to 
Eq. 6). If T² of a data point has a value greater than the UCL, it is an outlier and has to be purged from 
the preliminary dataset. With the remaining observations, new estimates for the mean value and the 
covariance matrix are calculated. For a second pass through the data also the UCL has to be recalcu-
lated for the remaining number of observations. Again, all detected outliers are removed and the pro-
cess is repeated until a homogenous set of data is obtained (Fig. 5) [4]. If a confidence level of (1-
α)=0.99 is defined, an observation with a T² higher than the UCL is an outlier with an error probability 
of 0.01 (=1%). In statistical process control the remaining data is the basis for definition of the UCL, 
the covariance matrix V and the average color for all following observations. 
 

 
 
Fig. 5: Flow chart for the elimination of outliers from a historical data set (HDS). 
 
 
Estimation of errors using electronically stored re ference data 
 
To obtain the capability of a production or measurement process, the knowledge of errors in meas-
urement is important. In some cases specifications are very close to the gauge of uncertainty of the 
color measurement process. To cut down costs, time and personnel, companies use electronically 
stored color coordinates as references. Usually spectrophotometers demand a reference and a sam-
ple for the measurement, and detect the color difference between both. As a reference either a physi-
cal color standard or a defined L*,a*,b*-value is used. In this work the estimation of adjacent errors 
using electronically stored references was performed.  
 
As the CIELAB color space is not visually uniform for small color differences (∆E*ab < 5) it is prefera-
ble to use the DIN99 color space [6]. DIN99 is uniform for small color differences and hence it is pos-
sible to compare the errors of different colors in DIN99 coordinates. In CIELAB one may only compare 
color differences from non-Euclidian calculations like color differences based on CIE2000, CIE94 or 
CMC [7–9]. Only in the three dimensional DIN99 color coordinates (∆L99, ∆a99, ∆b99) it is possible to 
visualize the dispersion of measured color coordinates. When using any of the color difference formu-
lae the problem is transferred into a one dimensional color difference scale (∆E) and the possibility of 
visualization in a three dimensional color space is lost. Therefore we used the DIN99 color space in 
this work. The DIN99 color space is also the basis for the color tolerances of uniform colors for auto-
motive coatings as specified in the DIN 6172-1 [10]. 
 
For the estimation of errors we used 8 samples. 4 of which have been RAL color cards (RAL3000 
flame red, RAL3015 light pink, RAL5010 gentian blue, RAL5024 pastel blue). The others were home-
made scratch resistant and cleanable color reference samples in the vicinity of the used RAL colors, 
labeled as anchor standards. 
 



Our basic approach was to measure the set of color standard samples at 20 days within two month 
and compare the color coordinates. The color coordinates of each observation were treated as if they 
were absolute values.  
 
One measurement approach (procedure A) was to calibrate the instrument, followed by 5 measure-
ments of absolute color coordinates L*,a*,b*, on random positions, on each color sample in random 
order of samples. This approach represents a practice in educated industrial labs (others sometimes 
remain at one or three measurements on each sample). 
 
The other approach (procedure B) includes calibration of the instrument, 40 subsequent blind meas-
urements to warm up the instrument, anew calibration followed by 20 measurements at random posi-
tions on each sample. This procedure represents an approach to explore the maximum limits of preci-
sion, when using a spectrophotometer together with electronically stored references.  
 

 
Fig. 6: Example for a time series, L99 value of the anchor standard in the vicinity of flame red (Datacol-
or SF600+, d/8, SPIN).  
 

 
  
Fig. 7: T²-Chart for the elimination of outliers (left), with outliers in the 1st cycle (pink), outliers eliminat-
ed in the 2nd cycle (red) und the upper control limit after the 2nd cycle. The chart of ∆E99 reveals that 
the elimination of outliers is not useful to take a color difference as a criterion.  
 
In both procedures, measurements were done on 20 days, within a period of 2 month. In the first step, 
color coordinates of each sample were transformed into DIN99 coordinates and the average color 
coordinates were calculated for each time series. In the second step, color differences of each mean 
value to the average coordinates of a time series were calculated and for all samples within proce-
dures A or B transferred to the difference coordinate system ∆L99, ∆a99, ∆b99. This leads to the disper-
sion of color coordinates within procedure A, or within B, respectively.  
 
On both data sets, form procedure A and from procedure B, the outliers were eliminated according to 
the procedure shown in Fig. 5. In case of procedure B (20 measurements) 7 outliers were eliminated 
in two cycles (s. Fig. 4, Tab. 1). Fig. 4 shows the dispersion of the data set of procedure B including 



the outliers. The ellipsoid in Fig. 4 was calculated for the covariance matrix and the Mahalanobis dis-
tance T² for a confidence level of (1-α)=0.99 after the 2nd cycle. Applying the outlier elimination to the 
  

 
Fig. 8: Determination of the distance matrix with the elements ∆E99,ik.  
 
In a first step the distance matrix of each procedure was calculated. In a data set with 160 elements 
12720 color distances ∆E are present. Statistical analysis of one half of the distance matrix of proce-
dure B provided a standard distribution of color differences (Fig. 9, left). The 0.95-quantile of the color 
distances had a magnitude of ∆E99 = 0.18 (Tab. 1). That means, if one measures according to the 
procedure B, the uncertainty is in this magnitude with a confidence level of 95%. In other words, in 
average every 20th observation has a higher error.  
 
In case of procedure A it was not possible to fit any simple distribution to the data set containing all 
observations as it seems to contain elements of different populations. In this case, the parameters 
were derived from a fitted function (Tab. 1).  
 

  
Fig. 9: Analysis of distance matrices of procedure A (5 measurements) including all 160 data points 
(left), and procedure B after elimination of outliers (20 measurements, left). 
 
After elimination of the outliers the parameters like median and the 0.95 and 0.99 quantiles of the data 
sets of procedure A and B were approximately equal (Tab. 1). This is a necessary constraint if the 
data sets of both procedures belong to the same population.  
 
The uncertainty of ∆E99 for procedure A was derived from the dataset including the outliers, as usually 
outliers are not eliminated according to the above described procedure (Fig. 5). The uncertainty of 
color difference for a confidence level of 95% had the magnitude of ∆E99 = 0.60 (Tab. 1). That means, 
in average every 20th observation has a higher error.  
 
Tab. 1: Statistical parameters for the errors in ∆E99, for procedures A and B, for the basic data sets 
and for data sets without the outliers.  



 
 
  
Conclusions 
 
Analysis of color measurements is a typical problem of multivariate statistics: Usually color coordinates 
of a colorimetric controlled process are located in an ellipsoid in the color space. These ellipsoids are 
usually not aligned to the coordinate axes. Their shape and orientation depend on the variances and 
covariances of the data. In such cases multivariate statistics has to be applied to describe the scatter-
ing around the mean color. Instead of ∆E a superior measure for the statistical distance in color space 
is the Mahalanobis distance.  
 
On this basis the errors in a measuring process using electronically stored references have been esti-
mated. The example included the detection of outliers and the precision with a spectrophotometer and 
color samples in the lab.  
 
When color coordinates, derived from the average of 5 measurements on a typical sample, are com-
pared to an electronic reference, an uncertainty in the color difference of ∆E99 = 0.60 has to be taken 
into account. To derive the process capability the magnitude of the uncertainty has to be compared 
with the specification. A capable process should have a specification that’s magnitude is at least twice 
as high. This might be fulfilled in the architectural applications but not for high end products. In the 
German automotive industry for the color tolerance of coatings is in the magnitude of ∆E99 ≤ 0.3 for 
the batch samples [10].  
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